Понятие: «АШ» , источник - Энциклопедия авиации


Аш — марка авиационных двигателей, созданных в опытном конструкторском бюро под руководством А. Д. Швецова (см. Пермское моторостроительное конструкторское бюро). Двигатели, разработанные под руководством его преемника П. А. Соловьёва, имеют другие марки.

. Основные данные некоторых двигателей приведены в таблицах 1 и 2..

Ещё до образования опытного конструкторское бюро Швецовым на заводе «Мотор» был создан ряд звездообразных поршневых двигателей воздушного охлаждения. Среди них М-11 — первый крупносерийный авиационный двигатель отечественной конструкции. В нём впервые и оригинально был решён ряд важных конструкторских задач: литая головка цилиндра из алюминиевого сплава, навёртывавшаяся на стальной цилиндр, разъёмный коленчатый вал, газораспределение с индивидуальными кулачковыми валиками для каждого цилиндра. Двигатель нашёл широкое применение в легкомоторной авиации..

В опытном конструкторском бюро, которое возглавил Швецов, к началу Великой Отечественной войны были созданы поршневые двигатели М-25, М-62 (АШ-62), АШ-62ИР, М-63 (АШ-63), АШ-82, в годы войны — усовершенствованные более мощные АШ-82Ф, АШ-82ФН (рис. 1). Высокие эксплуатационно-технические качества двигателей достигались разработкой и внедрением ряда оригинальных конструктивных решений: на АШ-62 и АШ-62ИР — двухдемпферного коленчатого вала для устранения крутильных колебаний, эластичной шестерни газораспределения, бокового уплотнения главного шатуна; на АШ-82 — металлокерамических дисков двухскоростной передачи. На АШ-82 и АШ-62ИР было применено фланкирование зуба неподвижной шестерни редукторов. На АШ-82ФН вместо карбюратора установлен агрегат непосредственного впрыска топлива, усовершенствована муфта двухскоростной передачи к нагнетателю (в то время это был самый мощный двигатель в своём классе). На двигателях введена расточка главного шатуна по гиперболе, применены плавающие втулки роликов толкателей..

Во время войны в 1941—1945 были созданы двигатели АШ-83 для истребителей Ла-5, Ла-7 и бомбардировщика Ту-2, а также М-71 (АШ-71) для штурмовиков Су-6, Су-8, бомбардировщика ДВБ-102 (В. М. Мясищева), истребителей И-185 и Ла-7, 18-цилиндровый АШ-71 имел два механизма газораспределения, пустотелые, заполненные металлическим натрием выпускные клапаны, дефлекторы цилиндров для улучшения охлаждения, азотированные гильзы цилиндров, регулятор наддува с внутренней маслопроводкой. Двигатели прошли все необходимые испытания, но вследствие сложности перестройки производства в военное время были выпущены малой серией. В 1944 на базе АШ-82ФН создан двигатель АШ-21 для тренировочных самолётов. После 1945 разработаны новые конструкции поршневых двигателей для тяжёлых самолётов военной и гражданской авиации, двигатели и редукторы для вертолётов. Создан АШ-73ТК для самолёта Ту-4. Для увеличения высотности (более 11 тысяч м) осуществлён двухступенчатый наддув двигателя. В качестве первой ступени наддува применён спроектированный в опытном конструкторском бюро турбокомпрессор ТК-19, работавший на энергии выпускных газов двигателя. Картер выполнен из стали (на других двигателях опытного конструкторского бюро устанавливался дуралюминовый).

. При создании АШ-73ТК впервые в стране освоены новые технологические процессы: прецизионное литье, автоматическая сварка под флюсом, пористое хромирование поршневых колец. Двигатель был установлен также на первом экземпляре самолета Ял-18 (в варианте с поршневым двигателем)..

В 1951 на базе АШ-32ФН изготовлен АШ-82Т. Для увеличения ресурса двигателя усилены редуктор, вал винта и вал агрегатов, средний картер выполнен из стали. Для улучшения охлаждения изменена конструкция головок цилиндров. На базе АШ-82Т разработан вертолётный поршневой двигатель АШ-82В. На нём вместо редуктора установлены две муфты: фрикционная с металлокерамическими дисками, включаемая при разгоне ротора вертолёта, и кулачковая, которая включается при равенстве частот вращения ведомых и ведущих дисков и выходе двигателя на эксплуатационный режим (фрикционная муфта при этом выключается). Для охлаждения двигателя разработан специальный вентилятор с приводом от двигателя. Были также созданы редукторы Р-1 — Р-5 для трансмиссий вертолётов..

В опытном конструкторском бюро разрабатывались также опытные двигатели.

. Один из них — четырёхрядный 28-цилиндровый звездообразный АШ-2К мощностью 3460 кВт имел турбокомпрессор и семь пульсирующих турбин, работающих на кинетической энергии выпускных газов с передачей мощности на коленчатый вал двигателя.

. Это последний, самый мощный поршневой двигатель, разработанный в опытном конструкторском бюро. В 1949 он прошёл испытания..

В 1953 перед опытным конструкторским бюро поставлена задача, не прекращая работ по увеличению надёжности и ресурса поршневых двигателей, приступить к разработке газотурбинных двигателей. Для вертолёта Ми-6 был создан экономичный турбовальный двигатель Д-25В (рис. 2), который включает девятиступенчатый компрессор, трубчато-кольцевую камеру сгорания, двухступенчатую турбину привода компрессора, одноступенчатую турбину привода винта.

. Применена «свободная», кинематически не связанная с турбокомпрессорной частью двигателя турбина привода винта, которая позволяет получать оптимальную частоту вращения вала несущего винта вертолёта независимо от частоты вращения ротора турбокомпрессора. До 80х гг. силовая установка Ми-6, состоящая из двух Д-25В и редуктора Р-7, была самой мощной в мире. Созданный для неё редуктор Р-7 имел ряд особенностей и оригинальных конструктивных решений: уравнительный механизм, распределяющий поровну мощность между двумя ведущими спиральными коническими шестернями, спиральную коническую пару, работающую с большими нагрузками при окружных скоростях ~70 м/с, узел центральной шестерни, передающий мощность на несущий винт вертолёта как при одном, так и при двух работающих двигателях, замкнутую планетарную передачу с двумя ступенями. Передаваемая мощность редуктора 8300 кВт..

В 1955 при разработке двигателя Д-20 была выбрана схема двухкаскадного двухконтурного турбореактивного двигателя , которая в дальнейшем явилась основой модификации Д-20П (рис. 3) для скоростного пассажирского самолёта Ту-124. В декабре 1959 двигатель прошёл государственные испытания. Он имел двухкаскадный осевой компрессор, трубчато-кольцевую камеру сгорания с 12 жаровыми трубами, трёхступенчатую турбину и сопло с раздельным истечением потока газа из наружного и внутреннего контуров. (Внутренний контур послужил основой двигателя Д-25В.).

В 1965 создана силовая установка для вертолёта В-12 (Ми-12), состоявшая из четырёх двигателей Д-25ВФ и двух редукторов Р-12. Д-20П явился прототипом двигателя Д-30, который в 1967 прошел государственные испытания. Д-30 имел двухкаскадный компрессор (первый каскад четырёхступенчатый, второй — 10-ступенчатый), трубчато-кольцевую камеру сгорания, четырёхступенчатую турбину, общее для обоих контуров реактивное сопло с лепестковым смесителем и камерой смешения.

. Впервые на отечественном серийном двигателе применены охлаждаемые рабочие лопатки первой ступени турбины. В результате массовой эксплуатации на самолётах Ту-134 двигатели Д-30 наработали более 12 миллионов ч. В 1970 на воздушной линии Аэрофлота, в том числе на международной, вышел самолёт Ту-134А с двигателями Д-30 второй серии.

. Применение реверсивного устройства на двигателе значительно улучшило эксплуатационные характеристики самолёта. В 1971 проведением государственных испытаний завершены опытно-конструкторские работы по созданию мощного высокоэкономичного Д-30КУ (рис. 4). Установка этих двигателей на Ил-62М позволила увеличить дальность его полёта по сравнению с Ил-62 и повысить коммерческую нагрузку. На двигателе впервые в отечественном двигателестроении установлено реверсивное устройство ковшевого типа..

В 1968 начаты работы над Д-30КП, по основным узлам почти полностью унифицированным с Д-30КУ. В начале 1972 он прошёл государственные испытания. Установлен на самолёте Ил-76. В 1974 для самолёта Ту-134А разработан двигатель Д-30 третьей серии с сохранением взлётной тяги до температуры окружающей среды 30{{°}}С..

В феврале 1979 прошёл 300-часовые испытания Д-30КУ-154 (модификация Д-30КУ), предназначенный для серийного самолёта Ту-154. По сравнению с базовым двигателем в конструкции реверсивного устройства, сопла, системы управления, внешней арматуры внесены небольшие изменения, поставлены дополнительные агрегаты. Лётные испытания Ту-154М с этими двигателями показали значительную (до 28%) экономию топлива..

В 1978 разработана следующая модификация — двигатель Д-30КУ второй серии с сохранением взлётной тяги до температуры окружающей среды 30{{°}}С.

. Аналогично модифицирован Д-30КП.

. Это позволило увеличить грузоподъёмность самолёта на 5 т. Дальнейшее совершенствование двигателей ведётся с использованием поузловой доводки, позволяющей значительно ускорить сроки создания новых двигателей. Широко применяются системы автоматического регулирования на базе цифровых вычислительных машин. Накопленный опыт и новые решения находят применение в новых высокоэкономичных двигателях, разрабатываемых для средних и дальних магистральных пассажирских самолётов нового поколения..

В конце 1983 изготовлен, собран и испытан первый экземпляр двигателя Д-90А (в 1987 обозначение изменено на ПС-90А, рис. 5). Унифицированный двухвальный турбореактивный двухконтурный двигатель ПС-90А (со смешением потоков газа наружного и внутреннего контуров, общим реактивным соплом, реверсивным устройством в наружный контуре) является представителем четвёртого поколения турбореактивных двигателей, создаваемых опытным конструкторским бюро. Двигатель предназначен для установки на магистральные пассажирские самолёты Ил-96-300 и Ту-204. Двигатель имеет высокие параметры термодинамического цикла, которые позволяют экономить до 30% топлива в год. По своим внешним характеристикам (шум, эмиссия) он соответствует международным нормам Международной организации гражданской авиации. Двигатель спроектирован сразу на окончательные ресурсы (холодная часть — 25 тысяч ч, горячая часть — 12,5 тысячи ч). Для особых случаев полёта на нём предусмотрен чрезвычайный режим (тяга на 10% больше, чем на взлётном режиме). В двигателе применён ряд новых конструктивных узлов и решений: узел подпорных ступеней (2 ступени); регулирование радиальных зазоров в 9—13 ступенях компрессора высокого давления и в 1—4 ступенях турбины; камера сгорания с укороченными жаровыми трубами, кольцевым газосборником, диффузором ступенчатой конструкции, фронтовым устройством жаровых труб с топливовоздушными насадками; лопатки турбины высокого давления с многокомпонентным жаростойким защитным покрытием. Для обеспечения стабильности характеристик в процессе эксплуатации за счёт уменьшения термической повреждённости деталей горячей части применена электронная система автоматического регулирования. Для получения высоких показателей эксплуатационной технологичности применён принцип модульности (11 модулей) , предусмотрены широкие возможности контроля технического состояния деталей различными средствами контроля..

Лит.: Грин Б. Д.. Генеральный конструктор А. Д. Швецов, Пермь. 1964; его же, Высокое небо, 2 изд., Пермь, 1973; Пономарев А. Н., Советские авиационные конструкторы. 2 изд.. М., 1980..

Ю. И. Ершов, В. Л. Сандрацкий..

Табл. — Поршневые двигатели конструкции А. Д. Швецова.

Марка двигателя.

.

Мощность, кВт.

.

Начало.

производства, год.

.

Применение.

аппараты).

.

М-11.

.

80,9.

.

1926.

.

По. 2 (У-2).

.

М-25А.

.

526.

.

1936.

.

И-15, И-16.

.

М-25В.

.

570.

.

1937.

.

И-16.

.

АШ-62 (М-62).

.

735.

.

1937.

.

И-153.

.

АШ-62ИР (М-62ИР).

.

735.

.

1938.

.

Ли-2, Ан-2.

.

АШ-63 (М-63).

.

809.

.

1939.

.

И-16.

.

АШ-82 (М-82).

.

1250.

.

1941.

.

Ла-5, Ла-7, Пе-8.

.

АШ-82Ф (М-82Ф).

.

1250.

.

1942.

.

Ла-5, Ла-7, Ту-2.

.

АШ-82ФН (М-82ФН).

.

1360.

.

1943.

.

Ту-2, Ил-12, Ла-5ФН.

.

АШ-73ТК (с турбокомпрессором ТК-19).

.

1770.

.

1947.

.

Ту-4.

.

АШ-82Т.

.

1400.

.

1951.

.

Ил-14.

.

АШ-82В (с редуктором Р-5).

.

1250.

.

1952.

.

Ми-4, Як-24.

.

.

Табл. — Газотурбинные двигатели Пермского моторостроительного конструкторского бюро.

Основные данные.

.

Д-25В.

.

Д-20П.

.

Д-30.

.

Д-30КУ.

.

Д-30КП.

.

ПС-90А.

.

Начало серийного производства, год.

.

1959.

.

1959.

.

1967.

.

1971.

.

1972.

.

1988.

.

Тип двигателя.

.

Турбовальный.

.

ТРДД.

.

ТРДД.

.

ТРДД.

.

ТРДД.

.

ТРДД.

.

Тяга, кН.

.

-.

.

53.

.

66,7.

.

108.

.

118.

.

167.

.

Мощность, кВт..

.

4050.

.

-.

.

-.

.

-.

.

-.

.

-.

.

Диаметр вентилятора, м.

.

0,572*'.

.

0,915.

.

0,963.

.

1,45.

.

1,45.

.

1,9.

.

Длина двигателя, м.

.

2,737.

.

3,304.

.

3,983.

.

5,696.

.

5,448.

.

5,33.

.

Удельный расход топлива на крейсерском режиме:.

.

.

.

.

.

.

.

.

.

.

.

.

.

кг/(Н*ч).

.

-.

.

0,0897.

.

0,0796.

.

0,0715.

.

0,0715.

.

0,0591.

.

г/(кВт*ч).

.

402**.

.

-.

.

-.

.

-.

.

-.

.

-.

.

Расход воздуха, кг/с.

.

26,2.

.

113.

.

126.

.

283.

.

283.

.

508,5.

.

Масса, кг.

.

1200.

.

1468.

.

1550.

.

2650**.

.

2650**.

.

2800.

.

Степень двухконтурности.

.

-.

.

1.

.

1.

.

2,4.

.

2,4.

.

4,8.

.

Степень повышения давления.

.

5,6.

.

14.

.

18,6.

.

20,5.

.

21.

.

35,5.

.

Температура газа перед турбиной, К.

.

1240.

.

1330.

.

1360.

.

1400.

.

1425.

.

1565.

.

Применение (летательные аппараты).

.

Ми-6, Ми-10.

.

Ту-124.

.

Ту-134.

.

ИЛ-62М, Ту-|54М.

.

Ил-76Т.

.

Ил-96-300, Ту-204.

.

* Диаметр первого рабочего колеса компрессора. ** Для условий, когда высота полёта H = 0..

*** С реверсивным устройством..


Copyright © 2018    ·    О проекте: «Рефераты, Энциклопедии, Словари On-Line»    ·